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Purpose 

• Review of ionospheric requirement and 
threat model

• Provide the latest information on the FAA- 
developed Ionospheric storm threat model 

• Mitigation Strategy
• Frequency of occurrence
• Procedural mitigation

• Nominal Ionospheric Parameter
• Summary
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Current Ionosphere Anomaly Detection 
Requirement

3.2.1.3.5.1 Condition for Valid Sigma Ionosphere 
The LGF shall detect Ionospheric conditions that result in noncompliance 

with the requirements in Sections 3.1.2.1 and 3.1.2.2.  When the 
increase in system risk associated with increased ionosphere gradients 
exceeds design tolerances, the LGF shall exclude the offending 
ranging source(s) and generate alerts as appropriate.  When 
ionospheric disturbances cannot be isolated to specific ranging 
sources, and system risk is not minimal (increases by more than one 
order of magnitude) as a result, the LGF shall generate an alarm.  Self- 
recovery shall be accomplished after ranging source exclusions or 
alarms are generated once the integrity requirements in Sections 
3.1.2.1 and 3.1.2.2 are again met.  The probability of a false alarm 
shall be less than 5 x 10-8 per 15-second interval. 

Note: The sigma ionosphere vertical gradient term must be valid for all 
users within Dmax from the LGF reference point, as identified in 
Section 3.1.2. 
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Referenced Integrity Requirement (1)
3.1.2.1.1 Category I Precision Approach The probability that the LGF 

transmits out-of-tolerance precision approach information for 3 
seconds or longer due to a ranging source failure, LGF failure, 
anomalous environmental or atmospheric effects, when operating 
within the Radio Frequency Interference (RFI) environment defined 
in appendix D of RTCA/DO-253A, shall not exceed 1.5x10-7 
during any 150-second approach interval.  Out-of-tolerance 
precision approach information is defined as broadcast data that 
results in a position error exceeding the Category I precision 
approach protection level and ephemeris error bound for any user 
that complies with RTCA/DO-253A and is located anywhere within 
Dmax. Ranging source failures, as described in Appendix E, shall 
include: 

a. Signal deformation, with a failure rate of 1.0 x 10-4 per hour per 
satellite during initial acquisition, and a prior probability of 4.2 x 10- 
6 per approach per satellite after acquisition; 
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Referenced Integrity Requirement (2)

b. Signal levels below those specified in Sections 3.3.1.6 and 6.3.1 of 
ICD-GPS-200C, for C/A code on L1 only, with a failure rate of 1.0 x 
10-4 per hour per satellite during initial acquisition, and a prior 
probability of 4.2 x 10-6 per approach per satellite after acquisition; 

c. Code/carrier divergence, with a failure rate of 1.0 x 10-4 per hour 
per satellite during initial acquisition, and a prior probability 4.2 x 
10-6 per approach per satellite after acquisition; 

d. Excessive pseudorange acceleration, such as step or other rapid 
change, with a failure rate of 1.0 x 10-4 per hour per satellite 
during initial acquisition, and a prior probability of 4.2 x 10-6 per 
approach per satellite after acquisition; or 

e. Erroneous broadcast of GPS ephemeris data, with a failure rate of 
1.0 x 10-4 per hour per satellite during initial acquisition, and a 
prior probability of 4.2 x 10-6 per approach per satellite after 
acquisition. 
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Threat Model Application

• Final LAAS Integrity Panel (LIP) determination 
• Due to the threat model and user impact scenario, 

feasibility of ground station detection of all cases is 
not possible

• Assumes installation of all equipment on airport and an 
independent ground facility (no external inputs)

• Storms are unpredictable, so no prior probability is assigned
• During the storm, safety must be maintained

• The final position error could be bounded, but not 
bounded by the protection levels (VPL)

• An operationally acceptable bound could be 
determined based on limiting user geometries with 
existing airborne alert limits (VAL)
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Change Process

• This information is provided in the spirit of 
information sharing and feedback.

• Change will be submitted with other changes in 
the next revision of the Non-Fed LAAS 
Specification

• Other standards 
changes/considerations/discussions will occur 
through the normal procedures
• ICAO difference must be addressed
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Proposed Specification Change (1)

3.2.1.3.5.1 The LGF shall set the Sigma Vertical Ionosphere 
Gradient Field to reflect or exceed the distribution 
associated with the residual ionospheric uncertainty due to 
spatial decorrelation under nominal ionospheric conditions.

Note: Anomalous ionosphere conditions which result in 
unacceptable hazardous conditions can be mitigated by 
monitoring external systems (e.g. WAAS) or adjusting 
protection level parameters values (e.g. Sigma Pseudorange 
Ground, Sigma Vertical Ionosphere Gradient, Ephemeris 
Decorrelation Parameter, etc.) to limit the maximum 
differential position error incurred by the airborne 
equipment (see Section 3.1.2.1.1 and Appendix E for 
additional guidance).
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Proposed Specification Change (1)

3.1.2.1.1 Will remain unchanged except for an added 
condition f.
f) Anomalous ionospheric conditions 

• For failure condition f,  out-of-tolerance precision 
approach information is defined as broadcast data 
that results in a position error exceeding the 
values shown in Table XX (vertical position error 
of 28.8m at the DH) for any user that complies with 
RTCA/DO-253. Failures conditions, as described 
in Appendix E shall include:
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Ionosphere Spatial Anomaly Model

Iono Front An illustration of the impact on LAAS users

• Moving wave front

 

scenario:
Ionosphere wave front moves in the same direction as the airplane does and 
“catches” the airplane from behind before reaching the LGF

• Stationary front scenario:
Ionosphere wave front is moving slower than aircraft approach speed and 
lies partially between aircraft and LGF

v = 110 m/s

70 
m/s

45 
km

LGF

Simplified model: a wave front ramp 
defined by the “slope”

 

and the “width”.

Slope (g)

Presenter
Presentation Notes
This slide shows a simplified model of an ionosphere spatial gradient anomaly.  The gradient itself is modeled as a linear change in vertical ionosphere delay between “high” and “low” delay zones.  The upper left shows the baseline model identified from the worst-case (sharpest gradient) point in the WAAS data shown previously, where the amplitude of the wave (high-to-low vertical delay difference) is 6 m, the width of the gradient is 19 km, and the wave moves forward at 110 km/s.  Given that this wave sweeps over a LAAS-equipped airport, the worst case from the aircraft’s point of view is a wave front that approaches from directly behind an aircraft on approach, overtakes the ionospheric pierce point of an aircraft before the aircraft reaches its decision height (note that a typical jet aircraft final approach speed is about 70 m/s, which is slower than the wave front).  After the wave front overtakes the aircraft, a differential range error builds up as a function of the rate of overtaking (in this case, 110 – 70 = 40 m/s) and the slope of the gradient (316 mm/km).  Before the wave front reaches the corresponding LGF pierce point, there is no way for the LGF to observe (and detect and exclude) the onset of the anomaly .  The worst-case timing is that which leads to the maximum differential error (often this means the time immediately before LGF detection and exclusion) at the moment when the aircraft reaches the decision height (where the tightest VAL applies).  Note that this worst-case event and timing, if it ever were to occur, would only affect one aircraft.  Other aircraft on the same approach would be spread out such that the wave front passage would create no hazard for them (VAL far from the decision height is much higher than the error that could result from this anomaly).
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Current Threat Model
• Threat model was assembled based on all 

observed ionospheric storm data collected 
within CONUS United States

• The FAA effort has focused on CONUS threats
• Leveraged data available from WAAS and CORS 

measurements

• Provided a network of dense network of 
measurements for anomaly characterization

• Other GBAS implementers must characterize 
threats in their region
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CONUS Ionospheric Anomaly 
November 20, 2003
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Ionosphere Anomaly Days Analyzed
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Summary of Current Ionosphere Threat Model 
Parameter Bounds (Revised)

(*) Max. error constrains possible slope/width combinations
(†) Max. gradient is linearly interpolated between 15 and 65o elevation angles

Elevation Speed Width Slope
(slant)

Max. 
Error

Low    elevation
(< 15)

90 – 750
m/s

25 – 200
km

30 – 375
mm/km(†)

30 m(*)

0 – 90
m/s

25 – 200
km

30 – 125
mm/km

25 m

High   elevation
(≥

 

65)
90 – 750

m/s
25 – 200

km
30 – 425
mm/km(†)

50 m(*)

0 – 90
m/s

25 – 200 
km

30 – 125
mm/km

25 m



14
0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

800

Ionosphere Maximum Slopes in Slant (mm/km)

Io
no

sp
he

re
 F

ro
nt

 S
pe

ed
 (m

/s
)

5

6
7

8
9
10

12

3839

40

4149

45

1

52

53

54

31

32

33
30

34

16 36

37

2 3
455

56 57

58

50

51

High El Stationary
High El Moving

L1 Code-minus-carrier

L1/L2 & L1 Code-minus-carrier

L1/L2 – not fully verified

Updated 2-D Threat Plot with All Significant, Validated 
Events (for Satellites above 12o Elevation)



15

Ionosphere Anomaly Wave Front Model: 
Potential Impact on a GBAS User

Simplified Ionosphere Wave Front Model:
a ramp defined by constant slope and width

Front Speed 
200 m/s

Airplane Speed 
70 m/s

Front Width 
25 km

GBAS Ground Station

Front Slope 
300 mm/km LGF IPP Speed 

200 m/s

Stationary Ionosphere Front Scenario: 
Ionosphere front and IPP of ground station IPP move with same velocity.
Estimated Range Error at DH:  300 mm/km ×

 

19 km  =  5.7 meters
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Maximum Differential Range Error at Precision 
Approach Threshold (post-CCD Monitor)

Anomalies with higher relative 
speeds are typically detected by LGF 
before they create significant errors.

Anomalies with 
lower gradients 
typically do not 

create hazardous 
user errors.
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Creating a Threat Model for Outside CONUS

• Determine range of threats
• Understand the physics of the events as much as possible

• Depletions or bubbles (equatorial)
• Polar scintillation and anomalies
• Other storm events

• Identify data to be collected
• A dense network of WAAS and CORS data was used in the US 

• Measurements are needed where more extreme activity is expected
• Northern Latitudes and equatorial regional are more active

• Ionospheric anomaly data must be identified
• Typical performance data
• Storm day performance
• Sensitivity to the solar cycle
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Solar Cycle Prediction 
http://www.swpc.noaa.gov/SolarCycle/
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Mitigating Ionospheric Anomalies

• Determine the maximum expected range error 
under the observed conditions
• Use the threat model to describe the ionospheric 

anomaly conditions
• Identify the user conditions in the threat environment

• Aircraft speed and direction
• Geometry of satellites used in the user solution

• Translate that error into user position error
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Mitigating Ionospheric Anomalies

• Determine if that error is operationally acceptable
• Weak user geometries translate into larger position errors

• Geometries can be eliminated by inflating nominal GBAS broadcast 
integrity parameter

• SLS-4000 safety case examines the maximum 
ionospheric error induced vertical position offset and 
compares it to the obstacle clearance surface

• Eliminate geometries where that error can cause errors 
larger than operationally acceptable
• Ground Facility requirement
• Expected median value of this error was an important 

consideration in this analysis
• What will the pilot see most (99.9%) of the time
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Example Protection Surfaces 
Reference Curt Shively, MITRE
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Range of User Positions Based on Maximum 
Ionospheric errors
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Stanford P-Value Inflation Results at Memphis 
Airport (RTCA 24-SV Constellation)
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Stanford VPL Inflation Results at Memphis 
Airport (RTCA 24-SV Constellation)

0 50 100 150 200 250 300
2

2.5

3

3.5

4

4.5

5

5.5

6

Time Index

Pr
ot

ec
tio

n 
Le

ve
l (

m
)

Vertical Protection Levels at 6 - 0 km

 

 

Uninflated VPLH0

Inflated VPLH0

0 50 100 150 200 250 300
2

3

4

5

6

7

8

Time Index

Pr
ot

ec
tio

n 
Le

ve
l (

m
)

Ephemeris Protection Levels at 6 - 0 km

 

 

Uninflated VPLe

Inflated VPLe



25

Availability Estimates for 10 CONUS Airports 
Using Honeywell Methodology
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Nominal Ionospheric Divergence Parameter

• In addition to ionospheric storm bounding, the 
standard deviation of the nominal divergence 
must be determined

• The parameter was determined using data from 
non-storm, but “active” ionospheric days
• Most days were well represented by 1mm/KM
• Several days had divergence rates approaching     

3-4mm/KM
• Data included in the HMI document is used to justify 

a broadcast parameter of 4mm/KM for all CONUS
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Summary
• Ionospheric requirements were discussed

• Anomalous activity bounding will be clarified

• Ionospheric broadcast parameter determination and 
bounding requires the service provider to characterize 
the level of activity in the region of interest
• Nominal divergence
• Ionospheric storm activity

• Ionospheric error mitigation technique was described
• Based on runway operational surfaces
• Requires a siting restriction between the ground facility and the 

intended runway ends 
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